Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta.

نویسندگان

  • K Thirunavukkarasu
  • M Mahajan
  • K W McLarren
  • S Stifani
  • G Karsenty
چکیده

Osf2/Cbfa1, hereafter called Osf2, is a member of the Runt-related family of transcription factors that plays a critical role during osteoblast differentiation. Like all Runt-related proteins, it contains a runt domain, which is the DNA-binding domain, and a C-terminal proline-serine-threonine-rich (PST) domain thought to be the transcription activation domain. Additionally, Osf2 has two amino-terminal domains distinct from any other Runt-related protein. To understand the mechanisms of osteoblast gene regulation by Osf2, we performed an extensive structure-function analysis. After defining a short Myc-related nuclear localization signal, a deletion analysis revealed the existence of three transcription activation domains and one repression domain. AD1 (for activation domain 1) comprises the first 19 amino acids of the molecule, which form the first domain unique to Osf2, AD2 is formed by the glutamine-alanine (QA) domain, the second domain unique to Osf2, and AD3 is located in the N-terminal half of the PST domain and also contains sequences unique to Osf2. The transcription repression domain comprises the C-terminal 154 amino acids of Osf2. DNA-binding, domain-swapping, and protein interaction experiments demonstrated that full-length Osf2 does not interact with Cbfbeta, a known partner of Runt-related proteins, whereas a deletion mutant of Osf2 containing only the runt and PST domains does. The QA domain appears to be responsible for preventing this heterodimerization. Thus, our results uncover the unique functional organization of Osf2 by identifying functional domains not shared with other Runt-related proteins that largely control its transactivation and heterodimerization abilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional regulation of osteoblast differentiation during development.

The osteoblast is the bone-forming cell. The molecular basis of osteoblast-specific gene expression and differentiation begin to be understood. Following the characterization of OSE2, an osteoblast-specific cis-acting element present in the Osteocalcin promoter Osf2/Cbfa1, the protein that binds to OSE2, was identified. Osf2/Cbfa1 is a member of the runt family of transcription factors. Its exp...

متن کامل

Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation

The osteoblast is the bone-forming cell. The molecular basis of osteoblast-specific gene expression and differentiation is unknown. We previously identified an osteoblast-specific cis-acting element, termed OSE2, in the Osteocalcin promoter. We have now cloned the cDNA encoding Osf2/Cbfa1, the protein that binds to OSE2. Osf2/Cbfa1 expression is initiated in the mesenchymal condensations of the...

متن کامل

The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment.

Bone formation is a carefully controlled developmental process involving morphogen-mediated patterning signals that define areas of initial mesenchyme condensation followed by induction of cell-specific differentiation programs to produce chondrocytes and osteoblasts. Positional information is conveyed via gradients of molecules, such as Sonic Hedgehog that are released from cells within a part...

متن کامل

Cryptic enhancer elements in luciferase reporter vectors respond to the osteoblast-specific transcription factor Osf2/Cbfa1.

Luciferase reporter vectors are commonly used for the functional analysis of basal promoter and enhancer elements of eukaryotic genes. Randomly occurring cisacting elements in the vector sequences that can spuriously respond to various transcription factors, combined with the high sensitivity of the luciferase assay system, could make these vectors unsuitable for functional studies with certain...

متن کامل

Expression of core binding factor Osf2/Cbfa-1 and bone sialoprotein in tooth development

The transcription factor Osf2/Cbfa1 is a key regulator of osteogenic differentiation while BSP, a major non-collagenous protein, is a marker of osteoblastic differentiation. To determine the relationship between Osf2/Cbfa1 and the formation of mineralized tissues in tooth development we have studied the temporal expression of Osf2/Cbfa1 and BSP mRNA using in situ hybridization. These studies sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 1998